Lecture 3

Circular shifting: Delaying

Circular shifting: Advancing

Circular Folding

Circular Symmetry

sedvence. occor = 1 circularly odd 2 ac(n)=22,-3,0 3

$$x_{2}(n) = \{ 4_{1}^{3}, 2_{1}^{2} \}$$

$$x_{2}(3) = 2$$

$$x_{2}(0) = 3$$

Summary: Circular Operations

Sequence	Expression	Explanation	
Input sequence	x((n))	Plot the samples of x(n) in anti-clockwise direction. Anti-clockwise means positive direction.	
Circular delay	x((n – k))	Shift sequence x(n) in anticlock-wise direction by k samples.	
Circular advance	x((n + k))	Shift sequence x(n) in clockwise direction by k samples.	
Circular folding	x((- n))	Plot the samples of x(n) in clockwise direction. Clockwise means negative direction.	
Circularly even	$\mathbf{x}(\mathbf{N} - \mathbf{n}) = \mathbf{x}(\mathbf{n})$	Sequence is symmetric about the point zero on the circle.	
Circularly odd	$\mathbf{x}(\mathbf{N}-\mathbf{n})=-\mathbf{x}(\mathbf{n})$	Sequence is anti-symmetric about the point zero or the circle.	

- Methods of Circular Convolution
- Generally, there are two methods, which are adopted to perform circular convolution and they are –
- Concentric circle method,
- Matrix multiplication method.
- Concentric Circle Method
- Let x1(n)x1(n) and x2(n)x2(n) be two given sequences. The steps followed for circular convolution
 of x1(n)x1(n) and x2(n)x2(n) are
- Take two concentric circles. Plot N samples of x1(n)x1(n) on the circumference of the outer circle maintainingequaldistancesuccessivepointsmaintainingequaldistancesuccessivepoints in anti-clockwise direction.
- For plotting x2(n)x2(n), plot N samples of x2(n)x2(n) in clockwise direction on the inner circle, starting sample placed at the same point as 0th sample of x1(n)x1(n)
- Multiply corresponding samples on the two circles and add them to get output.
- Rotate the inner circle anti-clockwise with one sample at a time.
- Matrix Multiplication Method
- Matrix method represents the two given sequence x1(n)x1(n) and x2(n)x2(n) in matrix form.
- One of the given sequences is repeated via circular shift of one sample at a time to form a N X N matrix.
- The other sequence is represented as column matrix.
- The multiplication of two matrices give the result of circular convolution.

Circular Convolution

• Circular convolution is defined by:

$$y_C[n] = \sum_{m=0}^{N-1} g[m]h[\langle n-m\rangle_N], \quad 0 \le n \le N-1$$

• N-point circular convolution is denoted as,

 $y[n] = g[n] \otimes h[n]$

The circular convolution is commutative, i.e

 $g[n] \otimes h[n] = h[n] \otimes g[n]$

Circular Convolution: Method 1

Circular Convolution: Graphical Method

x(n) = {2, 0, 3, -1} h(n) = {10, 20, 30, 40}

Reversed Signal 2

Product

Circular Convolution: Graphical Method

Circular Convolution: Graphical Method

Circular Convolution:-Graphical Method

Circular Convolution: Method 2

Circular convolution: Matrix Method

Circular Convolution: Matrix Method

4 2 2 3 3 4 2 2 2 3 4 2 3 y(2)2 2 3 4

Example - Consider the two length-4 sequences repeated below for convenience:

• The two 4-point DFTs can also be computed as

$$\begin{bmatrix} G[0] \\ G[1] \\ G[2] \\ G[3] \end{bmatrix} = \mathbf{D}_{4} \begin{bmatrix} g[0] \\ g[1] \\ g[2] \\ g[3] \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} H[0] \\ H[1] \\ H[2] \\ H[3] \end{bmatrix} = \mathbf{D}_{4} \begin{bmatrix} h[0] \\ h[1] \\ h[2] \\ h[3] \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 1 \\ 1 \end{bmatrix} =$$

The two 4-point DFTs can also be computed using the matrix relation given earlier

$$\mathbf{Y}_{C}[k] = \begin{bmatrix} Y_{C}[0] \\ Y_{C}[1] \\ Y_{C}[2] \\ Y_{C}[3] \end{bmatrix} = \begin{bmatrix} G[0]H[0] \\ G[1]H[1] \\ G[2]H[2] \\ G[3]H[3] \end{bmatrix} =$$

• A 4-point IDFT of Y_C[k] yields

• A 4-point IDFT of Y_c[k] yields

x(n) = (1, 2, 1), h(n) = (1, 2)

Therefore,	h(n) = M = 2	
		= 3 + 2 - 1 = 4
i.e., we have to	calculate 4-point DFT, i.e	., N = 4
Let us make ler	ngth of x(n) and h(n) equa	l to 4 by adding zeros at end.
Hence,	$x(n) = \{1, 2, 1, 0\}$	o at ond.
and	$h(n) = \{1, 2, 0, 0\}$	
We have,	$X(k) = W_N \cdot x_N$	
N-point circular convolution	$\sum_{m=0}^{N-1} g[m]h[\langle n-m\rangle_N]$	G[k]H[k]

H(k) = $\{3, 1 - 2j, -1, 1 + 2j\}$ \uparrow

$$Y(k) = \{12, -2j - 4, 0, j - 2\}$$

Properties of DFT

Type of Property	Length-N Sequence	N-point DFT
	g[n] h[n]	G[k] H[k]
Linearity	$\alpha g[n] + \beta h[n]$	$\alpha G[k] + \beta H[k]$
Circular time-shifting	$g[\langle n-n_o\rangle_N]$	$W_N^{kn_o}G[k]$
Circular frequency-shifting	$W_N^{-k_o n}g[n]$	$G[\langle k-k_o\rangle_N]$
Duality	G[n]	$Ng[\langle -k \rangle_N]$
N-point circular convolution	$\sum_{m=0}^{N-1} g[m]h[\langle n-m\rangle_N]$	G[k]H[k]
Modulation	g[n]h[n]	$\frac{1}{N}\sum_{m=0}^{N-1}G[m]H[\langle k-m\rangle_N]$